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Abstract 

The seminal paper on the meaning of the vector potential  by E. J. Konopinski  is revisited. The 

significance of this work has not been generally recognized to date.  We first briefly review 

Konopinski’s  findings and show that many of his key results can be obtained from a simpler and 

more familiar approach. We then discuss the additional implications of his analyses, which were 

overlooked by Konopinski himself. 
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A review of current textbooks and articles on classical electromagnetism indicates that the main results 

of Konopinski’s groundbreaking analyses[1] of the vector potential have been ignored to date.  (Our 

private communications with several recognized authorities on the subject lend support the view that 

there is a general lack of awareness of Konopinski’s main results.)  The aim of this Note is to alert the 

scientific  community of the existence and full implications of this important paper by a distinguished 

physicist.  

Konopinski’s analyses demonstrate the fallacy of the generally held view that the vector potential 𝐴 has 

no physical meaning in classical electromagnetism.  His paper follows up on Feynman’s complaint that a 

bias exists regarding the vector potential [2]. Konopinski  attributes this bias to erroreous notions arising 

from the gauge concept.  By contrast, it is generally recognized from the Bohm-Arhonov effect that 𝐴 

has physical meaning as a real “field” in quantum mechanics [2].  

The Coulomb potential 𝜑 has never been subjected to any such bias about its reality as a field.  Its reality 

as a stored potential energy of a unit test charge in an existing field is generally accepted.   Invoking the 

conservation of energy, one can, in principle, experimentally map out a scalar field, at least for a static 

or quasi-static case.  So the scalar potential has physical meaning, and its magnitude at all points in 

space can be determined experimentally, which satisfies the requirement for treating the scalar 

potential as a real field. 

Konopinski’s approach is to show that the generalized momentum, 𝑝 = 𝑀𝑣 + 𝑞𝐴, is a conserved 

quantity (in static or quasi-static cases) along any path where the gradients of 𝐴 and 𝜑  vanish.  Any 

change in 𝐴 will produce a compensating change in the charged particle momentum 𝑀𝑣  to preserve the 

conservation of generalized momentum along that path.   Thus, 𝐴 can be viewed as the momentum 

“stored” in the system comprised of a of a unit test charge in an external magnetic field.  

Konopinski  uses the same infinite solenoid example as  in the Bohm-Ahronov effect to illustrate how 

one can, in principle, experimentally measure 𝐴 at all points in space.  By applying a series of concentric 

rings around the solenoid, each with a unit charge on a sliding bead,  one can measure 𝐴 for all points in 

space and time by monitoring the associated changes in the bead momentum 𝑀𝑣 arising from solenoid 

current changes and  applying conservation of momentum (conservation of angular momentum in this 

case).   Thus, the vector potential satisfies the criteria for a “real” field: 𝐴 has physical meaning and its 

characteristics are experimentally accessible at every point in space.   One of Konopinski’s major 

accomplishments is that both classical and quantum mechanics are now on the same footing regarding 

the primacy of the potential formulations.  This difference in views of the reality of  𝐴 in classical and 

quantum physics was an inconsistency that eventually had to be eliminated. 
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To complement Konopinski’s more general development, we next offer a simple, alternative approach 

using a more elementary formulation.  The magnetic field 𝐵  is given by, 

𝐵 = ∇ × 𝐴  ,                         (1) 

and the total electric field, 𝐸 , (sum of Coulomb and induced fields) is given by, 

𝐸 = 𝐸𝐶 + 𝐸𝐼 = −∇𝜑 − 𝜕𝐴/𝜕𝑡                                                            (2) 

Although never stated explicitly in the literature, the relationship for 𝐸𝐼  in Eq. 2,  

𝐸𝐼 = −𝜕𝐴/𝜕𝑡 ,                                                                (3) 

is actually an expression of Faraday’s induction law, which, we suggest, should generally be framed as 

such to properly recognize its stature. This would also serve to better represent Konopinski’s conclusion 

regarding the physical meaning and measureability of 𝐴  .  Faraday’s law is usually expressed in terms of 

a closed line integral of the induced electric 𝐸𝐼.  This severely limits its utility to cases of high symmetry, 

while Eq. 3 is completely general .  Furthermore, the electric field formulation relies on the outmoded 

“action at a distance” concept, made obvious here by the fact that 𝐵 = 0 everywhere outside the 

solenoid.  Explicitly recognizing the stature of Eq.3 as a fundamental law of physics directly illustrates 

that the vector potential 𝐴 is real and meaningful because its time derivative is real and meaningful.  In 

other words, since 𝐸𝐼 is a real field, then 𝐴 must be a real field because it is the source of 𝐸𝐼  at every 

point in space. 

Using this form of the law of induction (Eq. 3), one can experimentally determine 𝐴 with the same 

solenoid setup (without explicitly invoking generalized momentum conservation ) by increasing the 

solenoidal current from zero to its value at time t while concurrently monitoring the change in the bead  

momentum.   There are no external Coulomb fields, and no gradients in 𝐴 along the ring so the force on 

the unit charged bead of mass 𝑀 is given by 𝐹 = 𝑑(𝑀𝑣) 𝑑𝑡 = −𝜕𝐴 𝜕𝑡 = −𝑑𝐴/𝑑𝑡, giving 𝐴 𝑡 =

−𝑀𝑣(𝑡). In this alternative approach, 𝐴 is given physical meaning through Faraday’s law of induction, 

and its measureability is demonstrated by using Konopinski’s  solenoid apparatus.   

The next point of this Note relates to a second major inconsistency which Konopinski  overlooked.   In 

deriving the analytic expression for 𝐴 outside the infinite solenoid, he invokes the “Coulomb gauge” 

 ∇ ∙ 𝐴 = 0 in the usual manner as a “convenient  choice” .   So, on the one hand, 𝐴 is physically real and 

measureable, while on the other, ∇ ∙ 𝐴 is completely arbitrary.  The generally accepted view that ∇ ∙ 𝐴 is 

completely arbitrary is an absurdity if Konopinski’s conclusions are correct, because the determination 

of 𝐴 for all points in space and time determines its divergence.  The resolution of this apparent paradox  
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is found by recognizing a general carelessness in applying the Lorenz gauge concept . Recall that one can 

always transform the real, physically meaningful potentials to the primed variables according to the  

Lorenz prescription, 

𝐴′ = 𝐴 + ∇𝜗;   𝜑′ = 𝜑 − 𝜕𝜗/𝜕𝑡,                                                               (4) 

where 𝜗 is an arbitrary function of time and space.  Although neither 𝐴′  nor 𝜑′ are physically 

meaningful, the Lorenz transformation leaves 𝐸 in Eq. 2 unchanged and physically meaningful. So, it is 𝐴′  

whose divergence is arbitrary in the Lorenz gauge, not  𝐴 .   There is no choice for  ∇ ∙ 𝐴 because, unlike 

𝐴’, 𝐴  is not physically meaningless.   

Another frequently repeated form of the error used to  justify the Coulomb gauge in the literature is 

that 𝐴 is defined by Eq.1, so one can always add any gradient function of space and time to 𝐴 without 

altering the physics of the problem.  This is false.  The vector potential is defined by both Eq.1 and Eq 3.  

One must apply the proper Lorenz transformation given by Eq. 4 to both 𝐴 and 𝜑 to preserve the correct 

physics .  The fundamental reason that ∇ ∙ 𝐴 = 0 in the present case is that all solenoidal fields are 

solenoidal.   There are no sources or sinks for 𝐸𝐼  , so there can be no sources or sinks for 𝜕𝐴/𝜕𝑡  in Eq. 3, 

which, in turn,  means that ∇ ∙ 𝐴 must be zero.  Physics dictates ∇ ∙ 𝐴.  It is not a matter of mathematical 

convenience.    

Any doubts about  ∇ ∙ 𝐴 can be removed by performing Konopinski’s experiment.  The betatron offers a 

sufficiently close experimental arrangement so it can be viewed as a device for experimentally 

determining  . The fact that betatrons perform as designed is direct experimental proof of the validity of 

the analytic expressions for derived for 𝐴 under the assumption that  ∇ ∙ 𝐴 = 0.  So, the betatron offers 

direct experimental proof that ∇ ∙ 𝐴 is not arbitrary.  

In our view, one cannot overstate the importance of Konopinski’s paper:  it clarifies the basic physics of 

the vector potential, eliminates major inconsistencies, and provides a strong argument for the primacy 

of the potentials over the electric field variables. (See ref 3 for further discussions of improper 

applications of the gauge concept.) 
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